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1. Introduction

The topological sigma model was introduced in [1] for a target which is a symplectic

manifold. In [2, 3] it was observed that for the Kähler case the topological sigma model

can be obtained by twisting the N = (2, 2) sigma model with Kähler target, with a certain

linear combination of the four supercharges becoming a scalar charge Q, sometimes referred

to as a BRST operator. The action is the sum of a Q-exact term and a topological term, so

that the path integral is given as a sum over topological sectors weighted by the exponential

of the topological term. Moreover the path integral of the twisted model is localized on the

fixed points of the Q-action. For the A-model of [2], the theory localises on holomorphic

maps and the topological term is the pullback of the Kähler form. For a comprehensive

review and applications to string theory see, e.g., [4].

The most general N = (2, 2) sigma model has both a kinetic term given by a metric g

and a Wess-Zumino term defined by a closed 3-form H, so that in each patch Uα there is a

2-form Bα with H = dBα [5, 6]. The geometry of the target space is bihermitian, i.e., the

metric g is hermitian with respect to two complex structures J±, and these are covariantly

constant with respect to the covariant derivatives with torsion

∇(±)J± = 0 , ∇(±) = ∇±
1

2
g−1H , (1.1)

where ∇ is the Levi-Civita connection. Alternatively, the conditions (1.1) can be rewritten

as the following integrability conditions

H = dc
+ω+ = −dc

−ω− , (1.2)

where ω± = gJ± and dc
± are the i(∂̄ − ∂) operators for the complex structures J±. When

the complex structures commute, the geometry also carries a local product structure. We
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refer to this special case as a bihermitian Local Product (BiLP) geometry. It was shown

in [5] that this case has a manifest N = (2, 2) superspace description in terms of chiral and

twisted chiral superfields. Bihermitian geometry has been given an alternative formulation

as Generalized Kähler Geometry [7] and subsequently in [8] it has been demonstrated

that this geometry is locally described in N = (2, 2) superspace using semi-(anti) chiral

superfields [9] in addition to chiral and twisted ones.

The only term explicitly dependent on B is the the WZ-term, which is proportional to

∫

X∗(B) =
1

2

∫

d2ξ BABǫ
µν∂µX

A∂νX
B .

The terms involving fermions depend on B only through the field strength H. In Euclidean

signature, Wick-rotation leads to an imaginary WZ term with a factor of ‘i’ in front of B.

For the quantum theory to be well-defined, it is necessary that H ∈ H3(M,Z), so

that there is a gerbe with connection {Bα} whose curvature is H. For the path integral, if

H2(M) is trivial, then the image c2 = X(Σ2) of a compact world-sheet (Σ2 is the boundary

of a three dimensional submanifold c3) and the WZ term can be written as an integral

of H over c3, so that the WZ-term depends on H only. If H2(M) is non-trivial, it is not

sufficient to specify H, and a choice of B must be specified. Then the exponent of the WZ-

term is defined as the holonomy of a gerbe over X(Σ2), see, e.g., formula in the appendix

(for further details on gerbes and gerbe holonomy the reader may consult [10 – 13]). It is

important to stress that to define a gerbe holonomy we in general need full information

about the gerbe connection {Bα}, not just H alone.

The twisting of the general N = (2, 2) sigma model with torsion was considered in [14]

and discussed further in [15 – 17]. However, there were problems in writing the action as

the sum of a Q-exact term and a topological term, so that it was hard to understand the

structure of the path integral as a weighted sum. Here we shall write the action in just such

a form, in the special case in which the complex structures commute, so that the geometry

is BiLP. The Q-exact term QV can be found from the N = (2, 2) superspace formulation,

in which the action is given by the superspace integral of a potential K depending on all

superfields. Grassmann coordinates θ, θ1, θ2, θ3 can be chosen such that Q = ∂/∂θ, and

hence V is given by integrating K over θ1, θ2, θ3. Strictly speaking, it is determined in this

way up to a total derivative term, as the usual superspace approach is not sufficiently careful

with boundary terms. Although we believe that twisting can nevertheless be performed

in superspace [18], we choose to circumvent the derivative question and related issues by

using a component presentation in which the total derivative terms are fixed.

The local product structure splits the coordinates locally into two sets, φi and χa.

One set of coordinates are the leading components of chiral superfields and the other set

are the leading components of twisted chiral superfields; which can be interchanged by a

coordinate redefinition in superspace. The A-twist of the model in which the φi are chiral

and the χa are twisted chiral is the same as the B-twist of the model in which the φi

are twisted chiral and the χa are chiral, so all cases are covered by considering, say, the

B-twist of the general model with arbitrary numbers of chiral superfields and twisted chiral
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superfields.1 We shall discuss the B-twist here.

The main result of the paper can be summarized as follows. The action of the twisted

model can be written as a sum of Q-exact term and a ‘quasi-topological term’. This

reduces to the usual topological term of the topological sigma-model when the target space

is Kahler, but with a non-trivialB field, this term in the action is not well-defined. However,

its exponential is well-defined and gives the holonomy of a flat gerbe, so that the quantum

theory is well-defined, with the path integral weighted by these holonomies.

The structure of the paper is as follows. In section 2 we present some background

information about the superspace formalism and topological twist. In section 3 the com-

ponent analysis is done. The twisted action is written as a sum of a Q-exact term and the

pull-back of a locally defined closed form. Section 4 is devoted to the geometrical interpre-

tation of the quasi-topological term using the language of flat gerbes. In section 5 some

comments and speculations are presented. In appendix we briefly review the definition of

holonomy for line bundles and gerbes.

2. Background

In this section we define the twist from the point of view of superspace.

The original N = (2, 2) sigma model with Minkowski signature has the Lorentz group

SO(1, 1) acting on the world sheet coordinates. In addition, there is an SO(2) × SO(2) R-

symmetry acting on the superspace Grassman variables (θ1+,θ2+,θ1−,θ2−), with one SO(2)

acting on the positive chirality odd variables θI+ and the other acting on the negative

chirality ones θI− (I = 1, 2). It is important to remember that θI+ and θI− transform as

Majorana-Weyl spinors, i.e. each is a one-component real spinor. The symmetry group of

the sigma model with Minkowski signature is then

SO(1, 1) × SO(2) × SO(2) . (2.1)

The R-rotations act on superfields Φ as vector or axial rotations:

V : Φi(x, θ±, θ̄±) 7→ eiαqi
V Φi(x, e−iαθ±, eiαθ̄±)

A : Φi(x, θ±, θ̄±) 7→ eiβqi
AΦi(x, e∓iβθ±, e±iβ θ̄±) , (2.2)

where qV and qA are the vector and axial R-charges respectively. Here θ± = 1√
2
(θ1±+iθ2±).

To twist the model as in [2, 3], one must first Wick rotate, so that the Lorentz group

becomes SO(2).

In Euclidean signature, we want to treat fields and their complex conjugates as formally

independent, in order to allow e.g. a B-twist in which positive and negative chirality fields

are twisted differently. This means that we need to consider the complexification of the

Euclidean theory (in analogy with CFT) and as a result consider the complexification of

the N = (2, 2) superspace. We will say more about this complexification elsewhere [19],

1Note that T-duality and mirror symmetry interchanges A and B-twists, and thus chiral and twisted

chiral fields.
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but here simply note that the complexified N = (2, 2) Euclidean sigma model has the

symmetry group (Lorentz and R symmetries)

SO(2,C) × SO(2,C) × SO(2,C) , (2.3)

allowing the possibility of A and B twists. In the complexified superspace we treat the

(twisted) chiral and (twisted) anti-chiral as independent fields.

The N = (2, 2) Euclidean supersymmetry algebra2 is

{

D+, D̄+

}

= i∂ ,
{

D−, D̄−
}

= i∂̄ , (2.4)

where ∂ ≡ ∂/∂z and z = x1 + ix2. As a result of twisting, two of the supercharges become

scalars Q, D̂, and two become vectors Dz, Dz̄. For the A and B twists,

A− twist : Dz = D̄−, Dz̄ = D+, Q =
1

2

(

D̄+ + D−
)

, D̂ =
1

2i

(

D̄+ − D−
)

,

B − twist : Dz = D−, Dz̄ = D+, Q =
1

2

(

D̄+ + D̄−
)

, D̂ =
1

2i

(

D̄+ − D̄−
)

. (2.5)

The new operators obey the algebra

{Q,Dz} =
i

2
∂̄, {Q,Dz̄} =

i

2
∂, {D̂,Dz} = −

1

2
∂̄, {D̂,Dz̄} =

1

2
∂ , (2.6)

for both twists. In fact, from the superspace point of view only one twist exists, the A

and B twists being related by a coordinate transformation exchanging θ− with θ̄−, or

equivalently, by exchanging the chiral and twisted chiral fields. For concreteness, from now

on we shall focus on the B-twist.

In Minkowski superspace, chiral (Φ) and twisted chiral fields (χ) obey the constraints

D̄±Φ = 0 , D̄+χ = D−χ = 0 ,

D±Φ̄ = 0 , D+χ̄ = D̄−χ̄ = 0 , (2.7)

along with their conjugates. In the Euclidean theory we need to consider φ, φ̄, χ, χ̄ as

independent with constraints (2.7).

For a B-twist, the chiral constraints on the superfields Φ, Φ̄ may be re-expressed in

terms of the new operators as

QΦ = 0, D̂Φ = 0, DzΦ̄ = 0, Dz̄Φ̄ = 0 , (2.8)

while the twisted chiral superfields χ, χ̄ obey

Dzχ = 0, Qχ = −iD̂χ, Dz̄χ̄ = 0, Qχ̄ = iD̂χ̄ . (2.9)

2In the algebra (2.4) it would be natural to remove the imaginary ‘i’ from the right hand side. However

we prefer to keep it in order to preserve the formal similarities with Minkowski-signature superspace.
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Denoting the θ-independent part by a vertical bar, we define the standard components of

our superfields as

Φ : φ ≡ Φ|, ψ± ≡ D±Φ|, F ≡ D+D−Φ| ,

χ : χ ≡ χ|, λ+ ≡ D+χ|, λ− ≡ D̄−χ|, G ≡ D+D̄−χ| , (2.10)

along with similar expressions for Φ̄ and χ̄. For completeness we also define the components

with respect to the new operators (2.5) and give their relation to the components (2.10)

χ : χ̃ = χ| = χ, ρz̄ = Dz̄χ| = λ+, η = −iD̂χ|,=
1

2
λ− Gz̄ = iDz̄D̂χ| = −

1

2
G

χ̄ : ¯̃χ = χ̄|,= χ̄ ρ̄z = Dzχ̄|,= λ̄− η̄ = iD̂χ̄| =
1

2
λ̄+, Ḡz = −iDzD̂χ̄| = −

1

2
Ḡ,

Φ : φ̃ = Φ| = φ, ψz = DzΦ| = ψ−, ψz̄ = Dz̄Φ| = ψ+, Fzz̄ = DzDz̄Φ| = F,

Φ̄ :
¯̃
φ = Φ̄| = φ̄, ϕ̄ = QΦ̄| =

1

2
(ψ̄+ + ψ̄−), ζ̄ = D̂Φ̄| = −

i

2
(ψ̄+ − ψ̄−) ,

H̄ = QD̂Φ̄| = −
i

2
F̄ . (2.11)

We choose to express the BRST transformations (generated by the charge Q) in terms of

the non-standard components:

χ : δχ = η, δη = 0, δρz̄ = Gz̄ +
i

2
∂χ, δGz̄ = −

i

2
∂η ,

χ̄ : δχ̄ = η̄, δη̄ = 0, δρ̄z = Ḡz +
i

2
∂̄χ̄, δḠz = −

i

2
∂̄η̄,

Φ : δφ̃ = 0, δψz =
i

2
∂̄φ̃, δψz̄ =

i

2
∂φ̃, δFzz̄ = −

i

2
(∂ψz − ∂̄ψz̄),

Φ̄ : δ ¯̃φ = ϕ̄, δϕ̄ = 0, δζ̄ = H̄, δH̄ = 0. (2.12)

We now have the option of continuing our analysis in superspace where the Q exact

term in the Lagrangian can be derived once we have decided which set of components to

use. This line of attack will be followed elsewhere [18]. Alternatively we may turn directly

to a component treatment which is what we do in the next section. If we do not use

complex conjugation in our calculations then the formal manipulations in Minkowski and

complexified Euclidean space or superspace are exactly the same.

3. The twisted model

The approach taken in this section is to start from a specific form of the component La-

grangian and then carefully keep track of all total derivative contributions under variations.

The component approach also allows us to keep the considerations general enough to allow,

e.g., for almost complex geometries.

The supersymmetry transformations we need follow from the superspace transforma-

tion rule

δΣ = [α−Q+ + α+Q− + α̃−Q̄+ + α̃+Q̄−,Σ] , (3.1)
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for any superfield Σ. Since we will be interested in the transformations of the components

arrived at by taking θ-independent parts of various superfields, we may replace the super-

charges in (3.1) by covariant derivatives according to:

δΣ| = i[α−D+ + α+D− + α̃−D̄+ + α̃+D̄−,Σ]| , (3.2)

where the vertical bar denotes the θ-independent part. Using (3.2) for the superfield Σ

given by Φ, DΦ, D2Φ, gives the transformations for the chiral multiplet used in [2],

δφi = iα−ψ
i
+ + iα+ψ

i
− ,

δφī = iα̃−ψ
ī
+ + iα̃+ψ

ī
− ,

δψi
+ = −α̃−∂φ

i − iα+F
i ,

δψī
+ = −α−∂φ

ī + iα̃+F
ī , (3.3)

δψi
− = −α̃+∂̄φ

i + iα−F
i ,

δψī
− = −α+∂̄φ

ī − iα̃−F
ī ,

δF i = −α̃−∂ψ
i
− + α̃+∂̄ψ

i
+ ,

δF ī = α−∂ψ
ī
− − α+∂̄ψ

ī
+ ,

where we have introduced a set of chiral multiplets labeled by i, j, . . . and a set of antichiral

multiplets labelled by ī, j̄, . . . The transformations of the components of twisted multiplets

labelled by a, b, . . . and anti twisted multiplets labelled by ā, b̄, . . . are found similarly to be

δχa = iα−λ
a
+ + iα̃+λ

a
− ,

δχā = iα+λ
ā
− + iα̃−λ

ā
+ ,

δλa
+ = −α̃−∂χ

a − iα̃+G
a ,

δλā
+ = −α−∂χ

ā + iα+G
ā , (3.4)

δλa
− = −α+∂̄χ

a + iα−G
a ,

δλā
− = −α̃+∂̄χ

ā − iα̃−G
ā ,

δGa = −α̃−∂λ
a
− + α+∂̄λ

a
+ ,

δGā = α−∂λ
ā
− − α̃+∂̄λ

ā
+ .

As shown in [5], the N = (2, 2) Lagrangian used in [2] can be generalized to include

the twisted chiral fields. It then reads

S=

∫

d2ξ

(

EAB∂X
A∂̄XB+

1

2
gABψ

A
+i∇

(+)ψB
+ +

1

2
gABψ

A
−i∇̄

(−)ψB
−+

1

4
R

(+)
ABCDψ

A
+ψ

B
+ψ

C
−ψ

D
−

)

,

(3.5)

where A,B, . . . label the (anti)chiral and twisted (anti)chiral fields and the connection used

in the covariant derivative and curvature have torsion Γ
(±)
ABC ≡ Γ

(0)
ABC ± 1

2HABC with Γ(0)

the Levi-Civita connection and

H ≡ dB , EAB ≡ gAB +BAB . (3.6)
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The explicit form of the action may be found using the components defined in (2.10).

The equations of motion for the auxiliary fields F and G are,

Kj̄iF
i = Kj̄klψ

l
−ψ

k
+ +Kj̄ab̄λ

b̄
−λ

a
+ +Kj̄kāλ

ā
−ψ

k
+ +Kj̄akψ

k
−λ

a
+

Kb̄aG
a = Kb̄cdλ

d
−λ

c
+ +Kb̄ij̄ψ

j̄
−ψ

i
+ +Kb̄c̄iψ

ī
−λ

c
+ +Kb̄icλ

c
−ψ

i
+, (3.7)

and may be used to go partially on-shell and eliminate the auxiliary fields in (3.3) and (3.4).

To construct a topological model out of this Lagrangian, we use the same procedure as

in [2], and twist the Lorentz group with either a vector or axial subgroup of the R-symmetry

group, so that two of the supercharges become scalars.

Using the R-symmetries available in the (2,2)-algebra we twist the Lorentz transfor-

mations of the fields, such that for the B-model

QB = Q̄+ + Q̄− , (3.8)

QT = Q̄+ − Q̄− ,

are scalar charges.

As in [2], we expect to obtain a topological model after the twisting with a Lagrangian

Ltotal written

Ltotal = LB + Ltop . (3.9)

The first term LB would be a QB exact term (LB = QBV
′). The second term Ltop is

expected to be some kind of ‘topological term’ that is a total derivative and does not affect

the equations of motion. If this term is given by a closed 2-form, then its integral is a

topological invariant depending on the cohomology class of the 2-form and the homology

class of the embedding of the world-sheet in the target. In the case involving only chiral and

antichiral fields, for the A-model, this term turns out to be the Kähler form ω of the target

space and its integral is the degree of the holomorphic map, [2]. To find the total derivative

term here, we will first calculate the exact part LB of the Lagrangian and subtract it from

the full Lagrangian Ltotal. Here we find it not to be given by a globally defined 2-form,

but instead by a flat gerbe connection, so it does not determine a cohomology class but

instead leads to a generalisation of a Wilson line.

Then V ′ is calculated by taking a potential depending on all the fields, K(φ, φ̄, χ, χ̄),

and acting on it with the other 3 supersymmetries,

V ′ = QTQ−Q+K . (3.10)

(We note in passing that LB is proportional to the full superspace integral of the superspace

Lagrangian K(Φ, Φ̄, χ, χ̄) up to surface terms which depend on the precise prescription for

the superspace measure.) We can use the transformations (3.4) and (3.5) to perform the
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first two steps, and use the transformations for the scalar supercharges,

δφī = iαB(ψī
+ + ψī

−) + iαT (ψī
− − ψī

+) ,

δψi
+ = −αB∂φ

i + αT∂φi ,

δψi
− = −αB ∂̄φ

i − αT ∂̄φi ,

δF i = −αB(∂ψi
− − ∂̄ψi

+) + αT (∂ψi
− + ∂̄ψi

+) (3.11)

δχa = iαBλ
a
− + iαTλa

− ,

δχā = iαBλ
ā
+ − iαTλā

+ ,

δλa
+ = αB(−∂χa − iGa) + αT (∂χa − iGa) ,

δλā
− = αB(−∂̄χā − iGā) + αT (−∂̄χā + iGā) ,

for the last variation of the potential K.

Performing these variations, we find the explicit form of V ′,

V ′ = −iKij̄ψ
j̄
−F

i + iKij̄ψ
j̄
+F

i − iKiaλ
a
−F

i + iKiāλ
ā
+F

i

−Ki∂ψ
i
− −Ki∂̄ψ

i
+ − iKijk̄ψ

k̄
−ψ

j
+ψ

i
− + iKijk̄ψ

k̄
+ψ

j
+ψ

i
−

−iKijaλ
a
−ψ

j
+ψ

i
− + iKijāλ

ā
+ψ

j
+ψ

i
− −Kij∂φ

jψi
− −Kijψ

j
+∂̄φ

i

−iKāb̄iψ
ī
−λ

b
+λ

ā
− + iKāb̄iψ

ī
+λ

b
+λ

ā
− − iKābcλ

c
−λ

b
+λ

ā
− + iKābc̄λ

c̄
+λ

b
+λ

ā
−

−Kāb∂χ
bλā

− + iKābG
bλā

− −Kābλ
b
+∂̄χ

ā + iKābλ
b
+G

ā

−iKiaj̄ψ
j̄
−λ

a
+ψ

i
− + iKiaj̄ψ

j̄
+λ

a
+ψ

i
− − iKiabλ

b
−λ

a
+ψ

i
− + iKiab̄λ

b̄
+λ

a
+ψ

i
−

−Kia∂χ
aψi

− + iKiaG
aψi

− −Kiaλ
a
+∂̄φ

i

−iKāij̄ψ
j̄
−ψ

i
+λ

ā
− + iKāij̄ψ

j̄
+ψ

i
+λ

ā
− − iKāibλ

b
−ψ

i
+λ

ā
− + iKāib̄λ

b̄
+ψ

i
+λ

ā
−

−Kāi∂φ
iλā

− −Kāiψ
i
+∂̄χ

ā + iKāiψ
i
+G

ā . (3.12)

Here indices on K denote partial derivatives, so that e.g.

Kij̄ = ∂i∂j̄K .

To calculate the exact term, we still have to BRST -transform V ′. Just as in the chiral

case, the topological term will be associated with the part of the action involving only the

scalars. For QBV
′ the purely bosonic part is given by

QBV
′ = Kij̄∂φ

j̄ ∂̄φi +Kij̄ ∂̄φ
j̄∂φi

−Kāb∂χ
b∂̄χā −Kāb∂χ

b∂̄χā

+Kiā∂χ
ā∂̄φi +Kia∂̄χ

a∂φi

−Kia∂χ
a∂̄φi −Kāi∂φ

i∂̄χā + fermi terms . (3.13)

Note that the fixed points of the Q-transformations are given by holomorphic twisted chiral

maps and by constant chiral ones. Thus arguments show that the theory is localized on

those maps.
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Let us now focus on the full Lagrangian of the system. We know from [5] that the

target space is a bihermitian manifold. We choose a local chart for that manifold such that

J±
i
j = iδi

j ,

J±
ī
j̄

= −iδī
j̄
,

J+
a
b = iδa

b , J−
a
b = −iδa

b ,

J+
ā
b̄

= −iδā
b̄
, J−

ā
b̄
= iδā

b̄
, (3.14)

where J± are the complex structures of the manifold. The metric g is

gij̄ = Kij̄ gab̄ = −Kab̄ . (3.15)

We then define the two-forms ω± = gJ±, which in this coordinate system are

ω± = −iKij̄dφ
i ∧ dφj̄ ± iKab̄dχ

a ∧ dχb̄ . (3.16)

The full Lagrangian Ltotal has two distinct geometrical parts, terms depending on the

metric g of the target space and terms depending on a B-field on the target space. For

the B-field, a useful gauge is the one of [5]. In this gauge, B is chosen to be B−, where

dB− = H and the (1, 1) component of B− with respect to J− vanishes. Then with B = B−,

the bosonic part of Ltotal reads

Ltotal = Kij̄∂φ
i∂̄φj̄ +Kij̄ ∂̄φ

i∂φj̄ −Kab̄∂χ
a∂̄χb̄−Kab̄∂̄χ

a∂χb̄−Kiādφ
i∧dχā−Kīadφ

ī∧dχa .

(3.17)

We can write Ltotal explicitly as

Ltotal = Kij̄∂φ
i∂̄φj̄ +Kij̄ ∂̄φ

i∂φj̄

−Kab̄∂χ
a∂̄χb̄ −Kab̄∂̄χ

a∂χb̄

−Kiā∂φ
i∂̄χā −Kīa∂φ

ī∂̄χa

+Kāi∂χ
a∂̄φī +Kāi∂χ

ā∂̄φi . (3.18)

We are now ready to determine the total derivative term of the action Ltop. Subtracting

the exact part of the action QBV
′, given in (3.13), from Ltotal, given in (3.18), we get

Ltop = Kab̄∂χ
a∂̄χb̄ −Kab̄∂̄χ

a∂χb̄

+Kai∂χ
a∂̄φi −Kai∂̄χ

a∂φi

+Kāi∂χ
a∂̄φī −Kāi∂̄χ

a∂φī . (3.19)

Focusing on the target space, the term can be written as a pullback of a two-form,

Ltop = X∗(Kab̄dχ
a ∧ dχb̄ −Kiadφ

i ∧ dχa −Kīadφ
ī ∧ dχa) , (3.20)

and we can see that the term is locally exact

Ltop = −X∗ (d(Kadχ
a)) . (3.21)

In other words, this is a total derivative term, but is not globally defined.
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4. Gerbes and the total derivative term

In this section we use gerbes (see appendix for some basic facts) to elaborate on the

geometrical meaning of the quasi-topological term3 (3.21). We argue that although the

action is not well-defined, the path integral is.

Before proceeding, it will be useful to compare two gauge choices for the B-field. In a

patch Uα, we can choose the gauge (Bα) = (Bα)+ in which the (1,1) part of B with respect

to J+ vanishes, or the gauge (Bα) = (Bα)− used in [5] in which the (1,1) part of B with

respect to J− vanishes, so that the gauges for B± are

(Bα)± = (Bα)
(2,0)
± + (Bα)

(0,2)
± , (4.1)

with B
(1,1)
± is zero. (Explicitly, (Bα)

(2,0)
+ is the (2,0) part of B with respect to J+ and

(Bα)
(2,0)
− is the (2,0) part of B with respect to J−.) These two gauge choices differ by a

globally defined exact form

(Bα)+ − (Bα)− = 2dΛα (4.2)

where Λα = Λ is a global 1-form.

As H is of type (2, 1) + (1, 2) with respect to both complex structures, it follows that

H
(2,1)
± = d(Bα)

(2,0)
± . (4.3)

In the coordinate system used in previous sections, the explicit form of (Bα)
(2,0)
± is

(Bα)
(2,0)
− = Kb̄i dχ

b̄ ∧ dφi , (Bα)
(2,0)
+ = Kia dφ

i ∧ dχa .

It is possible to choose transition functions for the gerbe to be holomorphic with respect to

both complex structures. It is thus natural to talk about bi-holomorphic gerbes. Further

details about the bi-holomorphic gerbe will be given in [22].

The term (3.21) is the pull-back of a locally exact form, which we denote b. Since the

potential K(α) is defined only locally over a patch Uα, this form is also defined only locally

bα = d(K(α)
a dχa) , bα ∈ Ω2(Uα) , K(α) ∈ C∞(Uα) . (4.4)

Thus {bα} is a collection of locally defined closed complex forms on M . These forms can

be written as follows,

bα = (Bα)
(0,2)
− − (Bα)

(2,0)
+ +

i

2
(ω− − ω+) . (4.5)

The real and imaginary parts of bα are

bα =
i

2
(F+

α + F−
α ) +

1

2
(Bα)− −

1

2
(Bα)+ =

i

2
(F+

α + F−
α ) + dΛ , (4.6)

3Related discussions of gerbes in the context of WZW models may be found in, e.g., [20, 21].
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where F±
α ∈ Ω2(Uα) are the real closed two-forms on Uα defined as follows

F±
α = i

(

(Bα)2,0
± − (Bα)0,2

±

)

∓ ω± . (4.7)

The property dF±
α = 0 is a consequence of the conditions (1.2) and (4.3). Thus, in a

way the forms F±
α are the local analogue of the Kähler form in the Kähler geometry.4

The real part dΛ is an exact form and does not contribute to the integral, so that the

quasi-topological term in the action is

Stop = i

∫

Σ2

X∗(F ) = i

∫

X∗(Σ2)

F , (4.8)

where

Fα =
1

2
(F+

α + F−
α ) . (4.9)

Next, we check that this term reduces to the familiar topological terms in the standard

A- and B-models. In the standard Kähler case when J− = −J+ and B is a globally defined

closed two-form, F is the complexified Kähler class

iF = B + iω . (4.10)

Then Stop is the topological term for the A-model as expected. In the standard Kähler

case with B = 0 and J− = +J+, F = 0 and there is no topological term, as expected for

the B-model. It is interesting that in this case, if we introduce a B which is a globally

defined closed two-form, then

iF = −
(

B2,0 −B0,2
)

,

so that

Stop = −

∫

(

B2,0 −B0,2
)

,

is the integral of a global 2-form and is well-defined despite the absence of an ‘i’.

We now return to the general case in which B is a gerbe connection. By itself the

term Stop is not well-defined. However we can make sense of Stop by exponentiating and

interpreting this as a holonomy of a flat gerbe. Let us briefly recall the case of Wilson loops

and flat connections on line bundles. For a line bundle with a flat connection, the connection

A is a collection of locally defined closed 1-forms, with suitable transition functions. For a

line bundle with connection A, the holonomy operator for a curve γ (a Wilson loop) is

WA = exp



i

∮

γ

A



 , (4.11)

4In Kähler geometry ∇J = 0 is equivalent to dω = 0, while in our case ∇
±

J± = 0 is locally equivalent

to dF± = 0.
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and if A is flat this depends only on the homology class of γ. Then for flat line bundles,

WA defines a map

WA : H1(M) → S1 ,

so that the map is an element of H1(M,U(1)).

The same idea works for a real flat gerbe. For a gerbe with a connection b there exists

a holonomy operator defined for any 2-cycle Σ

Wb = exp



i

∮

Σ

b



 , (4.12)

and if the connection is flat, db = 0, this depends only on the homology class of Σ. Then

for flat connections, Wb defines a map

Wb : H2(M) → S1 ,

which is then an element of H2(M,U(1)). The flat gerbe is a collection of locally defined

closed 2-forms, with suitable transition functions. The operator Wb depends only on the

homology of Σ and the connection b.

Now we would like to apply the idea of a flat gerbe to our quasi-topological term Stop.

Upon exponentiating this term and interpreting as a holonomy operator

exp






i

∫

X∗(Σ2)

F






: H2(M) → S1 , (4.13)

we arrive at a term which depends only on the homology class of X∗(Σ2). Thus finally

we conclude that, independent of the gauge, the topological term should be understood

through the holonomy of a real flat gerbe connection,5

exp



i

∫

Σ

F



 = WF = Hol (F ) , (4.14)

where Σ = X∗(Σ2).

5. Discussion

We have shown that the path integral can be written as a weighted sum for the B-twisted

BiLP models, i.e., for twisted sigma models involving chiral and twisted chiral fields (and

thus H-flux). One of the terms in the action corresponds to a flat gerbe connection and has

an interpretation as a quasi-topological term in the quantized theory. Its exponential is a

Wilson surface, a generalization of a Wilson line. We have further seen that the localization

of the model is on holomorphic twisted chiral maps and constant chiral ones.

5For notation, see [10].
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A natural question is how to extend the discussion to the full Generalized Kähler

Geometry, i.e., to include semi-chiral fields in the model. Indeed we believe that our result

will extend to the general twisted N = (2, 2) model, including the semichiral fields. For

the general case in which J+ and J− do not commute, then the F± defined by (4.7) still

satisfy dF± = 0 and so are flat gerbe connections. We conjecture that the twisted theory

continues to be weighted by the holonomy of the gerbe connection F = 1
2(F+ +F−) in this

general case, generalising the exponential of the degree. There are a number of important

issues to be addressed regarding how to deal with the the N = (2, 2) Euclidean model. We

plan to resolve these and related problems in the forthcoming publications.
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A. Gerbe holonomy

In this appendix we briefly review the notion of holonomy for line bundles and gerbes. For

more details the reader may consult [10 – 13].

Consider a smooth manifold M with an open covering {Uα} where all open sets and

intersections are contractible. The line bundle can be thought of as a set of transition

functions

gαβ : Uα ∩ Uβ → S1 ,

which satisfy gαβ = g−1
βα and the cocycle condition on Uα ∩ Uβ ∩ Uγ

gαβgβγgγα = 1 .

The connection on the line bundle can be defined as a collection of one-forms Aα ∈ Ω1(Uα)

such that on the double intersections Uα ∩ Uβ

iAα − iAβ = g−1
αβdgαβ .

Since on Uα∩Uβ dAα = dAβ we can define a curvature two form ω on M such that ω = dAα

on Uα. It can be shown that ω defines an integral cohomology class, ω/2π ∈ H2(M,Z).

For any loop γ in M , the holonomy is defined as follows. First (assuming a suitably

fine open cover) the loop γ is divided into segments γα such that each γα is in Uα and the

point (if any) at which γα and γβ join is denoted γαβ . Then the holonomy of A on the

curve γ is

Hol(A, γ) = exp



i
∑

γα

∫

γα

Aα + i
∑

γαβ

log gαβ(γαβ)



 ,
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and it can be shown that it does not depend on a particular choice of the partition γ

into {γα, γαβ}. If ω = 0, then there is flat connection on a line bundle. In this case the

holonomy Hol(A, γ) depends only on the homology class of γ.

A gerbe is a higher generalization of a line bundle. A gerbe can be defined as a set of

transition functions on threefold intersections

gαβγ : Uα ∩ Uβ ∩ Uγ → S1 ,

satisfying

gαβγ = g−1
βαγ = g−1

αγβ = g−1
γβα , gβγδgδγαgαβδgβαγ = 1 ,

where the last condition is understood on Uα ∩ Uβ ∩ Uγ ∩ Uδ. A connection on a gerbe is

defined as a collection of one-forms and two-forms {Aαβ , Bα} such that Aαβ ∈ Ω1(Uα∩Uβ)

and and Bα ∈ Ω2(Uα) with the relations

iAαβ + iAβγ + iAγα = g−1
αβγdgαβγ ,

on the triple intersections Uα ∩ Uβ ∩ Uγ and

Bα −Bβ = dAαβ ,

on the double intersection Uα∩Uβ . Since dBα = dBβ on Uα∩Uβ, one can define a curvature

three form H on M such that H = dBα on Uα. It can be shown that H defines an integral

cohomology class, H/2π ∈ H3(M,Z).

For any closed 2-surface Σ in M , the holonomy of a gerbe with connection is defined

as follows. We choose an open cover Uα of M and a simplicial decomposition of Σ into

2-simplices Σα such that Σα is in Uα and if Σα and Σβ have a common edge, that 1-simplex

is labelled Σαβ. If the three 1-simplices Σαβ, Σβγ , Σγβ intersect in a point, it is labelled

Σαβγ . The gerbe holonomy is then

Hol(B,A,Σ) = exp






i
∑

Σα

∫

Σα

Bα + i
∑

Σαβ

∫

Σαβ

Aαβ + i
∑

Σαβγ

log gαβγ(Σαβγ)






,

and one can prove that this does not depend on the particular choice of open cover of M

or of simplicial decomposition of Σ into {Σα,Σαβ ,Σαβγ}. If H = 0 the gerbe is called flat.

For a flat gerbe the holonomy depends only on the homology class of Σ.
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